
A Cutting-Edge Unified and Stable Rule Design
Pattern

Mohamed E. Fayad1(&), Gaurav Kuppa1, Siddharth Jindal1,
and David Hamu2

1 San Jose State University, San Jose, CA, USA
{m.fayad,gaurav.kuppa}@sjsu.edu,

siddharthajindal1@gmail.com
2 Liberty Consulting, Phoenix, AZ, USA

dave.hamu@gmail.com

Abstract. Often, changing market dynamics require business applications to
quickly and efficiently adapt to the needs of the ensuing business environment.
Business Rules excel in delivering software solutions that are implicitly
adaptable to changing business requirements; thus they can prove to be an
effective tool to provide necessary flexibility and control for rapidly deploying
changes across a wide array of business operations. When a proper design is
employed, business rules provide a robust and capable way of enabling enter-
prise software that adapts to changing business needs. In other words, business
rules find varied applications and ways of use, for example, managing a pending
problem, using it as production rules and for facilitating collaboration between
various systems, etc. However, despite a plethora of tools and technologies
available, most organizations still find it difficult to define or model workable
business rules explicitly. Furthermore, from a macroscopic point of view, rules
are important and inseparable artifacts in governing a software application to
make it comply with the system goals. In this paper, the current ways to manage
business rules along with their pitfalls are discussed, and therefore, a new
approach for developing rule-based business architectures is proposed. The
proposed approach allows for both managing and reusing business rules.

Keywords: Software reuse � Stable design patterns � Software Stability
Model � Business Rules � Knowledge map � Adaptability

1 Introduction

Modern business applications require a system that has the ability to efficiently and
effectively manage its processes to align itself with the business goals. Pertaining to
specific needs and requirements, a number of tools to generate and manage business
rules currently exist in the market. However, existing rule generating solutions possess
formidable limitations, including:

(1) Very high development and maintenance cost.
(2) Prohibitive demands for scarce technical expertise.

© Springer Nature Switzerland AG 2020
K. Arai et al. (Eds.): FTC 2019, AISC 1069, pp. 644–653, 2020.
https://doi.org/10.1007/978-3-030-32520-6_47

(3) Inadequate expressive semantics for modeling very complex solutions.
(4) Lack of administrative features required to manage complex rule-base deploy-

ments and versioning. majority of these issues center around the limits of con-
ventional modeling approaches which contend with tangible rather than changing
aspects of a software system. A flexible approach to system modeling is para-
mount for a successful business rules-based solution.

Some software engineer may counter that rules engines are entirely unnecessary
since a programming language is in and of itself a rules engine. This perspective is
naïve and is equivalent to asserting that a plumbing system is but an assortment of
pipes and fittings.

A rule, in general, is defined either to make an orderly system or to obtain uni-
formity for reaching the target. It is a verdict that must be followed while carrying out
the set of operations for which it is specified. In essence, a rule finds application in
almost every domain because it is the basic building block behind managing and
controlling a system. Therefore, it is imperative to understand how rules can be gen-
eralized and reused to suit any number of applications. According to Software Stability
Model (SSM), a rule can be classified as a Business Object (BO) as it has a specific
duration and is subject to changes over a period of time [7–9]. AnyRule Stable Design
Pattern [2–6] illustrated in this paper, identifies the core knowledge behind a rule,
related to its Enduring Business Theme (EBT) which is Governing. This clear sepa-
ration of knowledge from problem-specific artifacts makes it stable and reusable over
an unlimited number of applications [11].

In short, we assert that business rules-based software modeling is a wholly unique
process unto itself. The sort of generalizations which must be employed to successfully
model a dynamic, flexible and adaptable system of rules for a given domain is far more
specialized than one will find in a straightforward deterministic algorithm designed for
a solution that is not designed to be changed. Furthermore, the modeling approach and
methodology is different than what is employed when building software with an object-
oriented language. Foremost, the understanding of the solution domain must be far
deeper than the analysis that s required for a non-rule-based application. Software
Stability Method is a specialized approach to software engineering that targets those
essential aspects of a solution that are enduring (and therefore stable over time) and
distinguishes those aspects of a model from those aspects of a solution that are dynamic
and changing over time.

Section 2 of this paper discusses the problem associated with the existing ways of
modeling systems based on traditional methods and elaborates this with the help of a
few sample scenarios. It also touches upon the issue of current systems having failure
rates and how well-defined rule-based systems can be a solution to this problem. In the
latter half of this section, the new Stable Rule Pattern is discussed illustrating its reuse
potential. In Sect. 3, we will discuss a related rule-based traditional pattern and mea-
sure it against the new stable design pattern: this evaluation, both qualitative and
quantitative criteria. Section 4 will then provide a conclusion about this work, followed
by references to end the paper.

A Cutting-Edge Unified and Stable Rule Design Pattern 645

2 The Study

2.1 Problem

In the Information Technology (IT) sector, various studies have shown high failure
rates for the projects due to reasons ranging from confusing or changing requirements
to poor design and inappropriate alignment of business processes with the organiza-
tion’s goals and objectives. According to an estimate by the US Government
Accounting Office (GAO), it was found that out of a total of 840 federal projects,
approximately 49% were either poorly planned or performing poorly. In 2014, a market
survey conducted by Project Management Institute showed only 42% of organizations
having a high alignment of projects to organizational strategy. Furthermore, according
to a worldwide estimate, organizations and governments will spend approximately $1
trillion on IT services and infrastructure in the next few years. Most likely, 5 to 15% of
the initiated projects will be found inadequate and subsequently abandoned while many
more will be over-budget or over-time and may even need massive reworking. In other
words, only a few of these IT projects will truly succeed.

The reasons behind the failure of new business initiatives or improvement of an
existing business process are often complex. But it often comes down to the fact that
the underlying problems the organization was facing were poorly understood or the
process improvement initiatives were poorly attuned to solving the real needs of the
organization [1]. This is largely due to the fact that these initiatives were not properly
governed or elicited, owing to a lack of clearly defined and stable rules. Most orga-
nizations have a hard time identifying and articulating these rules because the rules and
logic are scattered across the organization and owned by several stakeholders who may
not possess the complete visibility of the interconnected nature of the problems that
they are trying to solve. This makes the business applications susceptible to failures as
the business itself may lack the agility and domain knowledge needed for adapting to
rapidly changing business situations.

2.2 Discussion

Traditionally, a rule is understood in the limited context of a term or a statement which
is accepted as true and used as a basis for reasoning or conduct. However, rules are the
fundamental unit that governs an application in almost every domain irrespective of the
problem concerned. Figure 1 depicts the scenario of a typical Loan Application
process.

646 M. E. Fayad et al.

In this example, a Loan Application is submitted to a Bank, which is then evaluated
as per the Bank Rules. However, any change in the application requirements or
components will lead to the re-designing of the complete application architecture. For
example, another application in similar context can be a sports application. In such a
scenario, a Coach may record data and select players on the basis of their performance
in some Training Match and even finalize their Playing Positions. But if we compare it
with the earlier model, we can find striking similarities in the underlying context of the
two models. Figure 2 gives an illustration of how another application deals with
problem-specific and distinct classes but in a similar context, i.e. rule-based evaluation
of players for selection into the final team.

Fig. 1. Traditional Loan Application process

Fig. 2. Traditional model for a sport application

A Cutting-Edge Unified and Stable Rule Design Pattern 647

Let us consider one more example of an application dealing with rules in another
way. Figure 3 shows an application scenario for a Conference Enrollment system. This
model again consists of completely different classes if compared with the earlier two,
but as can be seen, the underlying concept is about dealing with a set of rules to enroll
for a conference.

All the afore-mentioned application scenarios highlight an important and glaring
limitation with the traditional modeling approach [10], and that is, Lack of Stability. In
traditional UML, a rule pattern that is self-adaptive to ever occurring changes and self-
organizing to the problem at hand does not exist. Because of this, we need to rethink
the problem every time we are required to model an application dealing with rules. This
research demonstrates AnyRule as a Stable Design Pattern

2.3 Results

(a) The Stability Approach

As discussed earlier, a rule is the basic building block behind managing and controlling
a system. A rule usually consists of a set of conditions and acts as a standard for
different activities. It also provides detailed direction on how to convert a given strategy
into actions. However, for the rules to have any value, they are required to be collected
and stored in a manner that is consistent within the framework of the business
requirements. Well-organized and well-structured rules become vital information for
defining processes and executing actions. Given below are the stable representations of
the application scenarios discussed earlier in this column. These applications are re-
modeled using the newly proposed AnyRule Stable Design Pattern [5, 11]:

I. Rules in Banking: A bank, for example, Bank of America (AnyParty) defines the
minimum criteria like a credit score (AnyConstraint), for or above which only they
accept the credit card applications (AnyEntity). For this purpose, they hire pro-
fessionals like underwriters (AnyParty), who evaluate each credit application

Fig. 3. Traditional conference enrollment model

648 M. E. Fayad et al.

(AnyEntity) based on the applicant’s credit score (AnyConstraint). However, to
administer these requirements (AnyConstraint), they are governed by a set of
Business Rules (AnyType) which are usually statements (AnyRule) consisting of
conditions which help them evaluate each application without any bias or preju-
dice. These rules are generally recorded on rule manuals (AnyMedia) which are a
part of the Business Requirement Document (see Fig. 4).

Fig. 4. Stable pattern: Loan Application process

Fig. 5. Stable model for a sport application

A Cutting-Edge Unified and Stable Rule Design Pattern 649

II. Rules in Sports: During the trial and selection of basketball players (AnyParty), a
coach (AnyParty) defines the minimum physical standards (AnyConstraint) for
selection, based on which the players appear for trials. For selecting the best
players, the coach (AnyParty) uses a defined set of rules (AnyRule) as recorded
on the coaching manual (AnyMedia). The selection of the players has to be
carried in accordance with the standard international basketball rules (AnyType).
The players (AnyParty) performing best in practice matches (AnyEvent) and
meeting the minimum physical requirements (AnyConstraint) are shortlisted for
selection (see Fig. 5).

III. Rule in Conference Enrollment: Usually in technical conferences like the Self-
Adaptive and Self-Organizing (SASO) Systems (AnyEvent) which is being held
at Massachusetts Institute of Technology (MIT) in 2015, there are certain
specific Conference Rules (AnyRule) that are needed to be followed by the
Authors (AnyParty) to enroll and submit their work. These rules are often
specified and approved by the Program Chair (AnyParty) and are also respon-
sible for managing the conference. The authors can complete their Enrollment
(AnyType) by completing an Electronic Form (AnyMedia), which also high-
lights the Submission Guidelines (AnyConstraint) to be followed (see Fig. 6).

From the different applications of the AnyRule pattern discussed above, it is quite
evident that the proposed pattern can be utilized to generate problem-specific solutions
for different systems in a similar context. This capability gives the AnyRule Stable
Design Pattern the required flexibility of unlimited reuse and adaptability to varying
requirements [12–14].

Fig. 6. Stable conference enrollment model

650 M. E. Fayad et al.

3 Related Pattern and Measurability

3.1 Related Pattern

The pattern given below gives an abstract view of how the rules have been modeled
traditionally. This pattern consists of a number of dependencies in the form of
aggregation and inheritance. The model also includes tangible classes like the client,
GUI, Property List, etc. (see Fig. 7).

3.2 Measurability

Fig. 7. Traditional compound rule object model [15].

Table 1. Measurability study

Feature TM SSM

Number of tangible classes 4 0
Number of inheritances 5 0
Number of attributes per class 5–7 3
Number of operations per class 1–5 2
Number of applications 1 Unlimited

A Cutting-Edge Unified and Stable Rule Design Pattern 651

1. Quantitative Measurability: The total number of methods in any system can be
calculated using the formula:

T = C * M; where,
T = total number of operations
C = total number of classes
M = number of methods per class

(a) Traditional Rule Model

C = 13
M = 3
T = 13 * 3 = 39

(b) Stable Rule Model

C = 8
M = 2
T = 8 * 2 = 16

Stable Rule model is more applicable and accurate compared to traditional model
since the level of complexity is way less as evident by the above calculations. The
stable model based on three level architecture acquires a more detailed understanding
of the problem requirements with lesser complexity. The Traditional Rule Model
includes tangible classes, which make it vulnerable in the event of any change.

2. Qualitative Measurability

Whereas a traditional rule model can only be used for a particular application, the
stable rule model is usable in multiple applications. When requirements change, the
traditional rule model becomes obsolete or requires massive changes. On the other
hand, stable rule model can be used again and again by simply adjusting it to the
application scenario. This is further emphasized by the following quality measure.

R = Tc – Tn; where,
R = Reusability Factor
Tc = Total Number of Classes
Tn = Number of classes not reused

(a) Traditional Rule Model

Total Number of Classes = 13
Number of classes not reused = 13
Reusability of classes = 13 – 13 = 0

(b) Stable Rule Model

Total Number of Classes = 8
Number of classes not reused = 0
Reusability of classes = 8 − 0 = 8

From the above calculations, it is clear that stability model has much more reusable
classes than the traditional model, and hence it has wide applicability (Table 1).

652 M. E. Fayad et al.

4 Conclusion

This paper represents the core knowledge about rules and proposes the AnyRule Stable
Design Pattern. The usefulness and varied applicability of the pattern can be illustrated
by the fact that it is based on the core knowledge underlying any type of rules which
makes it reusable in unlimited applications and as much as required. Another goal of
our research has been to contribute in the development of a stable and comprehensive
Stable Business Rule Engine (SBRE) where both stable classes and application classes
are designed separately from each other and whose composition is formally supported
to ensure correctness and exactness. This separation of concerns allows for reusability
and enables the building of Stable Business Rules that are adaptable and extendable to
an unlimited number of applications. This engine will be accessible online by any
business, thereby removing huge costs of ownership and maintenance by only paying a
minimal license fee. Using the system, any user can set up the rules as per his or her
requirements through direct interaction with the portal simply by choosing required
features or answering a few questions.

References

1. Griss, M.L.: Software reuse: from the library to the factory. IBM Syst. J. 32(4), 1–23 (1993)
2. Griss, M.L., Wentzel, K.D.: Hybrid domain-specific kits for a flexible software factory. In:

Proceedings: SAC 1994, Phoenix, Arizona, March 1994
3. Gaffney, J.E., Cruickshank, R.D.: A general economics model of software reuse. In:

Proceedings: 14th ICSE, Melbourne Australia, May 1992
4. Mahdy, A., Fayad, M.E., Hamza, H., Tugnawat, P.: Stable and reusable model-based

architectures. In: ECOOP 2002, Workshop on Model-Based Software Reuse, Malaga, Spain,
June 2002

5. Hamza, H., Fayad, M.E.: Model-based software reuse using stable analysis patterns. In:
ECOOP 2002, Workshop on Model-based Software Reuse, Malaga, Spain, June 2002

6. Fayad, M.E.: Stable Design Patterns for Software and Systems. Auerbach Publications, Boca
Raton, FL (2015)

7. Fayad, M.E., Altman, A.: Introduction to software stability. Commun. ACM 44(9) (2001)
8. Fayad, M.E.: Accomplishing software stability. Commun. ACM 45(1) (2002a)
9. Fayad, M.E.: How to deal with software stability. Commun. ACM 45(4) (2002b)
10. Ross, R.G.: Business Rule Concepts: Getting to the Point of Knowledge, 4th edn. Business

Rule Solutions, LLC, April 2013
11. Jindal, S.: Stable Business Rule Standards. Masters Thesis, San Jose State University (2015)
12. Fayad, M.E., Sanchez, H.A., Hegde, S.G.K., Basia, A., Vakil, A.: Software Patterns,

Knowledge Maps, and Domain Analysis. Auerbach Publications, Boca Raton (2014)
13. Fayad, M.E., Cline, M.: Aspects of software adaptability. Commun. ACM 39(10), 58–59

(1996)
14. Muehlen, Z., Michael, M.I., Kittel, K.: Towards integrated modeling of business processes

and business rules. In: ACIS 2008 Proceedings, vol. 108 (2008). [Arch]
15. Arsanjani, A.: Rule object 2001: a pattern language for adaptive and scalable business rule

construction. In: PLoP 2001 Conference on Business Rule Construction. National EAD
Center of Competency, p. 12. IBM, Raleigh (2001)

A Cutting-Edge Unified and Stable Rule Design Pattern 653

